Lattices and perfect form theory

Mathieu Dutour Sikirié

Institute Rudjer Boskovi¢, Croatia and
Universitat Rostock

February 27, 2014



|. Lattices and

Gram matrices



Lattice packings

» A lattice L C R” is a set of the form L = Zvy + - - - + Zv,, with
(vl,...,v,) independent.

» A packing is a family of balls B,(x;,r), i € I of the same
radius r and center x; such that their interiors are disjoint.
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» If L is a lattice, the lattice packing is the packing defined by
taking the maximal value of o > 0 such that L + B,(0, ) is a
packing.

» The maximum « is called A(L) and the determinant of
(vi,...,vp) is det L.



Gram matrix and lattices

» Denote by S” the vector space of real symmetric n X n
matrices, SZ the convex cone of real symmetric positive
definite n x n matrices and SZ, the convex cone of real
symmetric positive semidefinite n X n matrices.

» Take a basis (v1,...,Vv,) of a lattice L and associate to it the
Gram matrix Gy, = ((vi, vj))1<ij<n € SZ.

» Example: take the hexagonal lattice generated by v; = (1,0)
and Vo = (%, §>



[sometric lattices

» Take a basis (vi,...,v,) of a lattice L with
vi = (Vi1,...,Vin) € R" and write the matrix
V171 e V,,71
V =
V17n N Vn,n
and G, = VT V.

The matrix G, is defined by w variables as opposed to n

for the basis V.

» If M € S7,, then there exists V such that M = VT V (Gram
Schmidt orthonormalization)

» If M=V Vi =V, Vp, then Vj = OV, with OT O = |,
(i.e. O corresponds to an isometry of R").
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» Also if L is a lattice of R” with basis v and u an isometry of
R", then G, = Gu(v)-



Arithmetic minimum

» The arithmetic minimum of A € SZ; is
min(A) = min xT Ax
xeZ"—{0}

v

The minimal vector set of A € S is

Min(A) = {x € Z" | xTAx = min(A)}

v

Both min(A) and Min(A) can be computed using some
programs (for example SV by Vallentin)

v

The matrix Apex = ( i ; ) has

Min(Apex) = {£(1,0), (0, 1), £(1, ~1)}.



Re-expression of previous definitions
» Take a lattice L=Zvi +---+ Zv,. If x € L,
X=x1vi+ -+ Xxpv, with x; €7Z

X1
we associate to it the column vector X =
Xn

» We get [|x]|> = X7 G,X and

1
det L =+/det G, and A(L) = 5 min(Gy)

> For Apex = ( i ; ) det Apex = 3 and min(Apex) = 2



Changing basis

» If v and v/ are two basis of a lattice L then V/ = VP with
P € GL,(Z). This implies

Gy = VTV =(vP)TVvP = PT{VTV}P = PTG,P

» If A, B € S, they are called arithmetically equivalent if there
is at least one P € GL,(Z) such that

A=PTBpP

> Lattices up to isometric equivalence correspond to SZ, up to
arithmetic equivalence.

» In practice, Plesken/Souvignier wrote a program ISOM for
testing arithmetic equivalence and a program AUTO for
computing automorphism group of lattices.

All such programs take Gram matrices as input.



Dual lattices

For a lattice L the dual lattice is

v

I*={xeR"st. (x,y) € Zforall y € L}

v

If L = PZ" then we can take L* = (P~1)T7Z" and we get

G(L*) = (G(L)~

v

A lattice L is integral if (x,y) € Z for all x,y € Z.

v

This is equivalent to say L C L*
A lattice is self-dual if L = L*.

A lattice is self-dual if and only if its Gram matrix is integral
and of determinant 1.

v

v



Root lattices

> A root lattice is a lattice generated by a root system
» They are integral, ||x||? € 2Z and Min(L) is the root system

» Most classical example is

n+1
A, = {X S ZM sk ZX,' = 0}

i=1

Possible basis: v; =611 — ¢ for 1 <i<n
» They have a strict ADE classification:

Name Min |Minl| det | Aut |
An| e—¢ | 2n(n+1) | n+1]2(n+1)!
Dn| *ei+e | 4n(n—1) | 4 2"n!
Es | complex | 72 3 103680
E7 | complex | 126 2 2903040
Eg | complex | 240 1 696729600




Self-dual even lattice

> A lattice is even if for all x € L, (x,x) € 2Z.
» The Theta function of a self-dual even lattice of dimension n is

O(L,q) = g

xel

and it is a modular form for SL»(Z) of weight n/2.
» This implies that they exist only for dimension n divisible by 8.

Dimension lattices
8 Eg
16 Eg ¢ Eg and D;%
24 | Leech lattice and 24 Niemeier lattices
32 at least 40 million lattices

» The key to above enumeration and estimates are the Siegel
Mass formula and Kneser's algorithm

» M. Kneser, Quadratische Formen, Springer Verlag.



The Leech lattice

» Every non-zero vector v has ||v||2 > 4 and det Leech = 1.
> It is the best lattice packing in dimension 24. Density is

12

T
—— =~ 0.001930...
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» There are 196280 shortest vectors (maximal number in
dimension 24)
» The covering radius is v/2 and covering density is

12

T 24
T 2) ~ 7.903536...
121 (\f

It is conjectured to give the best covering in dimension 24.

> Its automorphism group quotiented by +/d>4 is the sporadic
simple group Cog and it contains many sporadic simple groups
as subgroups.

> It is also related to some Lorentzian lattices.



lI. Computational

techniques



Polytopes, definition

» A polytope P C R” is defined alternatively as:
» The convex hull of a finite number of points v?, ..., v™:

P={veR"|v=> Xv with \; >0and > X\ =1}

» The following set of solutions:
P = {x € R" | fj(x) > b; with f; linear}

with the condition that P is bounded.
» The cube is defined alternatively as
» The convex hull of the 2" vertices

{(X17 e ;Xn) Wlth Xj = il}
» The set of points x € R” satisfying to

x,-glandx,-Z—l



Facets

v

v

and vertices

A vertex of a polytope P is a point v € P, which cannot be
expressed as v = Av! + (1 — A)v? with 0 < A < 1 and
vi£v2 e P,

A polytope is the convex hull of its vertices and this is the
minimal set defining it.

A facet of a polytope is an inequality f(x) — b > 0, which
cannot be expressed as

f(x) — b= Af(x) — b1) + (1 — A)(f2(x) — b2) with

fi(x) — bi > 0 on P.

A polytope is defined by its facet inequalities. and this is the
minimal set of linear inequalities defining it.

The dual-description problem is the problem of passing from
one description to another.

There are several programs CDD, LRS for computing
dual-description computations.

In case of large problems, we can use the symmetries for
faster computation.



Linear programs

» A linear program is the problem of maximizing a linear
function f(x) over a set P defined by linear inequalities.

P ={xecR? suchthat fi(x)> b;}

with f; linear and b; € R.
» The solution of linear programs is attained at vertices of P.
» There are two classes of solution methods:

Gptimal solution vertex Gptimal solution vertex
Simplex method Interior point method
» Simplex methods use exact arithmetic but have bad
theoretical complexity
> Interior point methods have good theoretical complexity but
only gives an approximate vertex.



[1l. Perfect forms

and domains



Perfect forms

v

A form A is extreme if it is a local maximum of the packing
density.

A matrix A € SZ, is perfect (Korkine & Zolotarev) if the
equation

B € S" and x'Bx = min(A) for all x € Min(A)

implies B = A.

Theorem: (Korkine & Zolotarev) If a form is extreme then it
is perfect.

Up to a scalar multiple, perfect forms are rational.

All root lattices are perfect, many other families are known.



A perfect form

2 1 .
> Apex = ( 1 o > corresponds to the lattice:

a b
> If B = b e

x € Min(Apex) = {£(1,0),+(0,1), £(1, —1)}, then:

satisfies to x T Bx = min(Apex) for

N———

a=2 ¢c=2 and a—2b+c=2

which implies B = Apex. Apex IS perfect.



A non-perfect form

> Ay = < é ° ) has Min(Asqr) = {=(0, 1), £(1,0)}.

> See below lattices Lg, Lgqr associated to matrices
B, Asqr € 52 with Min(B) = Min(Asg,):




Perfect domains and arithmetic closure

v

If v € Z" then the corresponding rank 1 form is p(v) = w .

If Ais a perfect form, its perfect domain is

Dom(A) = 5 Rip(v)

vEMin(A)

If A has m shortest vectors then Dom(A) has 7' extreme rays.
So actually, the perfect domains realize a tessellation not of
524, nor Sgo but of the rational closure Slgt,EO'

The rational closure S/, - has a number of descriptions:

> Sies0 = 2yez Rip(v)
> If A€ 5%, then A€ 57, -, if and only if Ker A is defined by

rational equations.

So, actually, the stabilizers of some faces of the polyhedral
complex are infinite.



Finiteness

» Theorem:(Voronoi) Up to arithmetic equivalence there is only
finitely many perfect forms.

» The group GL,(Z) acts on SZ:
Q— P'QP

and we have Min(PtQP) = P~ Min(Q)
> Dom(PTQP) = ¢(P)" Dom(Q)c(P) with c(P) = (P~1)"
» For n = 2, we get the classical picture:




Known results on lattice packing density maximization

o
3

Nr. of perfect forms

Best lattice packing

N
£

O 00O ~NOOCTL P~ WN

1 (Lagrange)
1 (Gauss)

2 (Korkine & Zolotarev)
3 (Korkine & Zolotarev)
7 (Barnes)

33 (Jaquet)
10916 (DSV)
>500000

?

Es (Blichfeldt & Watson)

E; (Blichfeldt & Watson)

Es (Blichfeldt & Watson)
Ao?

Leech (Cohn & Kumar)

» The enumeration of perfect forms is done with the Voronoi

algorithm.

» The number of orbits of faces of the perfect domain
tessellation is much higher but finite (Known for n <7)

» Blichfeldt used Korkine-Zolotarev reduction theory.

» Cohn & Kumar used Fourier analysis and Linear programming.




Some algorithms

>

Pb 1: Suppose we have a configuration of vector V. Does
there exist a matrix A € SZ; such that Min(A) = V?

Consider the linear program
minimize A
with A = A[v] for v eV
Alv] > 1forveZ"—-{0} -V

The value Aoy determines the answer.

In practice one replaces Z" by a finite set and iteratively
increases it until a conclusion is reached.

Pb 2: How given a matrix A € SZ, find B perfect with

A € Dom(B)?

The method is to start from a perfect matrix B and test if A
belongs to Dom(B). If not there exist a facet F of Dom(B)
such that A is on the other side (found by LP).

We flip over it. Eventually, one finds the right perfect form.



V. Ryshkov polyhedron
and the Voronoi algorithm



The Ryshkov polyhedron

» The Ryshkov polyhedron R, is defined as
R, = {A €5"st. xTAx > 1 forall x € Z" — {0}}

» The cone is invariant under the action of GL,(Z).

» The cone is locally polyhedral, i.e. for a given A € R,
{x €Z"st. x"Ax = 1}

is finite

v

Vertices of R, correspond to perfect forms.

v

For a form A € R, we define the local cone

Loc(A) = {Q €S"st. x"Qx>0if x"Ax = 1}



The Voronoi algorithm

» Find a perfect form (say A,), insert it to the list £ as undone.

> lterate
» For every undone perfect form A in £, compute the local cone
Loc(A) and then its extreme rays.
» For every extreme ray r of Loc(A) realize the flipping, i.e.
compute the adjacent perfect form A’ = A+ ar.
» If A’ is not equivalent to a form in £, then we insert it into £
as undone.

» Finish when all perfect forms have been treated.

The sub-algorithms are:

» Find the extreme rays of the local cone Loc(A) (use CDD or
LRS or any other program)

» For any extreme ray r of Loc(A) find the adjacent perfect
form A’ in the Ryshkov polyhedron R,

» Test equivalence of perfect forms using ISOM



Flipping on an edge |

Min(AheX) = {:l:(]-a 0)7 i(oa 1)7 :l:(]-’ _1)}

with




Flipping on an edge Il

Min(B) = {=(1,0),£(0,1)}




Flipping on an edge Il

Min(Asqr) = {£(1,0),£(0,1)}
with
10

Ahex

sqr




Flipping on an edge IV

Min(’ahex) = {:I:(la 0)7 :I:(O, 1)7 :l:(lv 1)}

Ahex = < L _1/2 > = Ahex+ D

-1/2 1
. Ahex

with

. Khex



The Ryshkov polyhedron R,
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Well rounded forms and retract

v

A form Q@ is said to be well rounded if it admits vectors vy,
., Vp such that

» (vi,...,Vv,) form a R-basis of R” (not necessarily a Z-basis)
> vi,...,V, are shortest vectors of Q.
» Well rounded forms correspond to bounded faces of R,,.

» Every form can be continuously deformed to a well rounded
form and this defines a retracting homotopy of R, onto a
polyhedral complex WR,, of dimension n(n-1)

» Every face of WR,, has finite stabilizer.

» Actually, in term of dimension, we cannot do better:

» A. Pettet and J. Souto, Minimality of the well rounded retract,
Geometry and Topology, 12 (2008), 1543-1556.

» We also cannot reduce ourselves to lattices whose shortest

vectors define a Z-basis of Z".



Topological applications

>

The fact that we have finite stabilizers for all faces means that
we can compute rational homology/cohomology of GL,(Z)
efficiently.

This has been done for n <7

» P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms, K-theory
and the cohomology of modular groups, Adv. Math 245
(2013) 587-624.

As an application, we can compute K,(Z) for n < 8.
By using perfect domains, we can compute the action of
Hecke operators on the cohomology.

This has been done for n < 4:

» P.E. Gunnells, Computing Hecke Eigenvalues Below the
Cohomological Dimension, Experimental Mathematics 9-3
(2000) 351-367.

The above can, in principle, be extended to the case of
GL,(R) with R a ring of algebraic integers.
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V. Tessellations



Linear Reduction theories for S”
Some GL,(Z) invariant tessellations of S7, q:
» The perfect form theory (Voronoi |) for lattice packings (full
face lattice known for n < 7, perfect domains known for
n <38)

» The central cone compactification (Igusa & Namikawa)
(Known for n < 6)

» The L-type reduction theory (Voronoi Il) for Delaunay
tessellations (Known for n < 5)

» The C-type reduction theory (Ryshkov & Baranovski) for
edges of Delaunay tessellations (Known for n < 5)

» The Minkowski reduction theory (Minkowski) it uses the
successive minima of a lattice to reduce it (Known for n < 7)
not face-to-face

» Venkov's reduction theory also known as Igusa's fundamental
cone (finiteness proved by Crisalli)



Toroidal compactifications of A,

> A polyhedral GL,(Z)-tessellation of S[, - is admissible if it is
a face-to-face tessellation and has finite number of orbits.

> Admissible GL,(Z) invariant tessellations of S7, -, give rise
to toroidal compactifications of the moduli spaceiAg of
principally polarized abelian varieties.
> For the perfect form tessellation Agerf is a canonical model in
the sense of the minimal model program if g > 12:
» N. Shepherd-Barron, Perfect forms and the moduli space of
abelian varieties, Invent. Math. 163-1 (2006) 25-45
» For Voronoi Il tessellation Ag"’ has its boundary
corresponding to semi-abelic varieties:
» V. Alexeev, Complete moduli in the presence of semiabelian
group action, Ann. of Math. 155-3 (2002) 611-708
» Properties of the compactification being Q-Gorenstein, having
canonical singularities, terminal singularities can be read off
from properties of the tessellation.



Geometry of tessellation and compactifications

» Thm: (Namikawa) For a given admissible tessellation F the
corresponding tessellation is smooth if and only if
> All cones are simplicial
» For all cones, the set of generators of extreme rays can be
extended to a basis of Sym?(Z).

» For Age’ f we prove

» Every cone of dimension at most 9 in the perfect cone
decomposition is basic. In particular the stack Agerf is smooth
for g < 3 and the codimension of both the singular and the
non-simplicial substack of AF*" is 10 if g > 4.

» Every cone of dimension 10 is simplicial with the only
exception the cone of the root lattice Dy.

» For .A;/O’ we prove

» For g < 4 every cone in the second Voronoi compactification is
basic.

» For g > 5 there are non-simplicial cones in dimension 3, in
particular A;,/"’ is singular in dimension 3.



Self-dual cones

> For an open cone C in R” the dual cone is
C*={xeR"st. (x,y) >0fory e C}

» Such cones are classified by Euclidean Jordan algebras and the
classification gives:
» S The cone of positive definite real quadratic forms
H". The cone of positive definite Hermitian quadratic forms
Q": The cone of positive definite quaternionic quadratic forms
The cone of 3 x 3 positive definite octonion matrices.
The hyperbolic cone H,

vV vyvyy

Hy={(x1,..., %) st.xa >0and x; —x3 — -+ —x3 >0}

> References
» A. Ash, D. Mumford, M. Rapoport, Y. Tai Smooth
compactifications of locally symmetric varieties, Cambridge
University Press
» M. Koecher, Beitrage zu einer Reduktionstheorie in
Positivtitsbereichan 1/1l, Math. Annalen 141, 384-432, 144,
175-182



T-space theory

» A T-space F is a vector space in 5" with Foo = F N SZ,
being non-empty.

» All above reduction theories apply to that case.

» But some dead ends exist to the polyhedral tessellations.

» Relevant group is Aut(F) = {g € GL,(Z) s.t. gFg" = F}.

» For a finite group G C GL,(Z) of space

F(G) = {A €S"st. gAgT = Afor g e G}

we have Aut(F(G)) = Norm(G, GL,(Z)) (Zassenhaus) and a
finite number of F-perfect forms.

» There exist some T-spaces having a rational basis and an
infinity of perfect forms.

» Another finiteness case is for spaces obtained from GL,(R)
with R number ring.



Non-polyhedral reduction theories

» Some works with non-polyhedral, but still manifold domains:

» R. MacPherson and M. McConnel, Explicit reduction theory for
Siegel modular threefolds, Invent. Math. 111 (1993) 575-625.

» D. Yasaki, An explicit spine for the Picard modular group over
the Gaussian integers, Journal of Number Theory, 128 (2008)
207-234.

» Other works in complex hyperbolic space using Poincaré
polyhedron theorem:
» M. Deraux, Deforming the R-fuchsian (4,4, 4)-lattice group
into a lattice.
» E. Falbel and P.-V. Koseleff, Flexibility of ideal triangle groups
in complex hyperbolic geometry, Topology 39 (2000)
1209-1223.

» Other works for non-manifold setting would be:

» T. Brady, The integral cohomology of Out, (F3), Journal of
Pure and Applied Algebra 87 (1993) 123-167.

» K.N. Moss, Cohomology of SL(n,Z[1/p]), Duke Mathematical
Journa 47-4 (1980) 803-818.



VI. Central cone

compactification



Central cone compactification

» We consider the space of integral valued quadratic forms:
In={A€S"st. Alx] € Z for all x € Z"}

All the forms in I, have integral coefficients on the diagonal
and half integral outside of it.

» The centrally perfect forms are the elements of /, that are
vertices of conv /.

» For A€ I, we have A[x] > 1. So, I, C R,

» Any root lattice is a vertex both of R, and conv /,,.

> The centrally perfect forms are known for n < 6:

dim. Centrally perfect forms
2 A, (lgusa)
3 As (lgusa)
4 A4, Dy (Igusa)
5 As, Ds (Namikawa)
6 Ag, Ds, Es (Dutour Sikiri¢)

> By taking the dual we get tessellations of 57, -o.



Enumeration of centrally perfect forms

» Suppose that we have a conjecturally correct list of centrally
perfect forms A1, ..., Am. Suppose further that for each form
A; we have a conjectural list of neighbors N(A;).

» We form the cone
C(A)) = {X — A, for X € N(A))}

and we compute the orbits of facets of C(A;).

» For each orbit of facet of representative f we form the
corresponding linear form f and solve the Integer Linear
Problem

fopt = min (X

opt = 2l (X)
We have to use GLPK program for that. It is done iteratively
since I, is defined by an infinity of inequalities.

> If fopr = f(A;) always then the list is correct. If not then the
X realizing f(X) < f(A;) need to be added to the full list.



VII. Voronoi Il
theory



Empty sphere and Delaunay polytopes

A sphere S(c, r) of radius r and center ¢ in an n-dimensional
lattice L is said to be an empty sphere if:

(i) |lv—=-c|| > rforall velL,
(i) the set S(c,r) N L contains n+ 1 affinely independent points.

A Delaunay polytope P in a lattice L is a polytope, whose
vertex-set is LN S(c, r).




Equalities and inequalities

» Take M = G, with v = (v1,...,v,) a basis of lattice L.
> If V= (w,...,wy) with w; € Z" are the vertices of a
Delaunay polytope of empty sphere S(c, r) then:

llwj —c|| =r ie. w] Mw; — 2w Mc+ c"Mc = r?
» Subtracting one obtains
{w,” Mw; — WjTMWj} —2{w — WJ-T}MC =0

» Inverting matrices, one obtains Mc = (M) with ¢ linear and
so one gets linear equalities on M.

» Similarly ||w — ¢|| > r translates into linear inequalities on M:
Take V = (w, ..., vn) a simplex (v; € Z"), w € Z". If one
writes w = >.7 o \jv; with 1 =37/ \;, then one has

n
w—c||>rew Mw— Z)\,’V,-TMV,' >0
i=0



Iso-Delaunay domains

> Take a lattice L and select a basis vy, ..., vj.

» We want to assign the Delaunay polytopes of a lattice.
Geometrically, this means that

***********************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

are part of the same iso-Delaunay domain.

» An iso-Delaunay domain is the assignment of Delaunay
polytopes. It is a polyhedral domain of Srrz-;t,zo-

Primitive iso-Delaunay

> If one takes a generic matrix M in SZ,, then all its Delaunay

are simplices and so no linear equality are implied on M.
» Hence the corresponding iso-Delaunay domain is of dimension

n(n2+1). they are called primitive




Equivalence and enumeration

» The group GL,(Z) acts on SZ by arithmetic equivalence and
preserve the primitive iso-Delaunay domains.

» Voronoi proved that after this action, there is a finite number
of primitive iso-Delaunay domains.

» Bistellar flipping creates one iso-Delaunay from a given
iso-Delaunay domain and a facet of the domain. In dim. 2:

LN o vy
N 1 A
» Enumerating primitive iso-Delaunay domains is done

classically:

» Find one primitive iso-Delaunay domain.
» Find the adjacent ones and reduce by arithmetic equivalence.

» This is very similar to the Voronoi algorithm for perfect forms.



The partition of 57, .o C R® |

If g(x,y) = ux? + 2vxy + wy? then q € S2, if and only if
v2 < uw and u > 0.




The partition of 57, . C R Il

We cut by the plane u+ w =1 and get a circle representation.

v




The partition of 57, . C R Il

. .. . . . 2 .
Primitive iso-Delaunay domains in Srat,20'




Enumeration of iso-Delaunay domains

» The covering density is equal to the maximum of the
circumradius of the Delaunay polytopes.

> In principle if one knows all primitive iso-Delaunay then one
can find the best covering lattice.
» A lattice is rigid (Grishukhin & Baranovski) if it is determined
by its Delaunay polytopes (iso-Delaunay domain of dimension

1)

dim. Best covering Nr. of primitive iso-Delaunay | Nr. of rigid lattices
2 Ao (Kershner) 1 (Voronoi) 0

3 A} (Bambah) 1 (Voronoi) 0

4 A} (Delone & Ryshkov) 3 (Voronoi) 1

5 AZ (Ryshkov & Baranovski) 222 (Engel) 7

6 Le (conj. Vallentin)? > 2.10° (Engel) > 20000

> See for more details

» A. Schiirmann, Computational geometry of positive definite
quadratic forms, University Lecture Notes, AMS.
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